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ABSTRACT
In the late 2000s, a pandemic of Pseudomonas syringae pv. actinidiae biovar 3 (Psa3) devastated kiwifruit orchards growing sus-
ceptible, yellow-fleshed cultivars. New Zealand's kiwifruit industry has since recovered, following the deployment of the tolerant 
cultivar 'Zesy002'. However, little is known about the extent to which the Psa population is evolving since its arrival. Over 500 
Psa3 isolates from New Zealand kiwifruit orchards were sequenced between 2010 and 2022, from commercial monocultures 
and diverse germplasm collections. While effector loss was previously observed on Psa-resistant germplasm vines, effector loss 
appears to be rare in commercial orchards, where the dominant cultivars lack Psa resistance. However, a new Psa3 variant, 
which has lost the effector hopF1c, has arisen. The loss of hopF1c appears to have been mediated by the movement of integrative 
conjugative elements introducing copper resistance into this population. Following this variant's identification, in-planta patho-
genicity and competitive fitness assays were performed to better understand the risk and likelihood of its spread. While hopF1c 
loss variants had similar in-planta growth to wild-type Psa3, a lab-generated ∆hopF1c strain could outcompete the wild type 
on select hosts. Further surveillance was conducted in commercial orchards where these variants were originally isolated, with 
6.6% of surveyed isolates identified as hopF1c loss variants. These findings suggest that the spread of these variants is currently 
limited, and they are unlikely to cause more severe symptoms than the current population. Ongoing genome biosurveillance of 
New Zealand's Psa3 population is recommended to enable early detection and management of variants of interest.

1   |   Introduction

Kiwifruit (Actinidia spp.) is a valuable perennial crop threat-
ened by the bacterial pathogen Pseudomonas syringae pv. 
actinidiae (Psa). The Psa pathovar contains five biovars, 
primarily distinguished from one another by their variable 

accessory genomes—including effectors and toxin biosyn-
thetic clusters—that in turn determine their virulence and 
host range (McCann et al. 2017; Sawada and Fujikawa 2019; 
Hemara et  al.  2022). Of particular importance, Psa biovar 3 
(Psa3) spread throughout kiwifruit-growing regions world-
wide during a pandemic in the late 2000s, causing significant 
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economic losses (McCann et al. 2013; Vanneste 2017). In 2010, 
an incursion of Psa3 was discovered in Te Puke, New Zealand's 
main kiwifruit-growing region (Everett et al. 2011). The fol-
lowing year, Psa3 devastated kiwifruit orchards growing sus-
ceptible Actinidia chinensis var. chinensis cultivars (Everett 
et al. 2011). Currently, Psa3 is the only biovar in New Zealand, 
alongside the closely related Pseudomonas syringae pv. ac-
tinidifoliorum (Pfm) (Vanneste et al. 2013; Cunty et al. 2015). 
Replacing A. chinensis var. chinensis ‘Hort16A’ with the less 
susceptible cultivar 'Zesy002' has helped the kiwifruit indus-
try recover from the impact of this bacterial canker disease 
(Vanneste 2017). However, Psa remains a persistent challenge 
to growers, requiring significant time and expense to manage, 
with one of the main preventative strategies being the wide-
spread use of copper sprays (Colombi et al. 2017).

New Zealand's Psa3 population has continued to evolve and 
adapt to the environmental challenges presented in kiwifruit 
orchards, as exemplified by the acquisition of copper resistance 
from the local microbiome (Colombi et al. 2017). Furthermore, 
several Psa isolates from Actinidia arguta vines have lost rec-
ognised effectors, making these variants more virulent on a 
kiwiberry species, typically considered Psa-resistant (Hemara 
et al. 2022).

Effectors of host-adapted pathogens interact with host targets 
to aid pathogen entry, suppress host immunity, and extract nu-
trients, ultimately benefiting pathogen virulence and establish-
ing disease (Bent and Mackey 2007; Chisholm et al. 2006; Xin 
et  al.  2018; Zipfel 2009). However, these effectors can also be 
recognised by plant resistance proteins, with effector-triggered 
immunity producing a robust immune response, preventing 
the establishment of disease and conferring host resistance 
(Nomura et al. 2005; Chisholm et al. 2006; Mur et al. 2008; Ngou 
et al. 2021; Yuan et al. 2021). Pathogens, in response, may un-
dergo effector gene gain, loss, mutation, and pseudogenisation 
to counter evolving plant immune systems and maintain their 
pathogenicity. Therefore, monitoring effector gain and loss in 
New Zealand's Psa3 population is of particular importance to 
capture potential changes in virulence and the ability of this 
population to overcome disease control measures, including 
host genetics.

Little is known about the full extent to which New Zealand's 
Psa3 population may be adapting to its hosts since its intro-
duction into commercial kiwifruit orchards. Further still, the 
exact genetic and immune mechanisms underlying the Psa 
tolerance of cultivars like 'Zesy002' are unknown. Therefore, 
new Psa variants may emerge that overcome this tolerance, 
thereby threatening New Zealand's kiwifruit industry once 
more. Furthermore, new cultivars continue to be developed and 
commercially released, including the new red-fleshed cultivar 
A. chinensis var. chinensis ‘Zes008’. Each monoculture, with its 
unique genetics, may exert different selection pressures on this 
Psa3 population. Genome biosurveillance, early variant detec-
tion, and subsequent pathogenicity characterisation are critical 
to ensure we can respond appropriately to emerging adaptations 
in the Psa population. The decreasing cost of whole genome se-
quencing has allowed us to conduct an in-depth, longitudinal 
genome biosurveillance programme to understand how a clonal 
lineage of Psa3 responds to selection pressures in the orchard 

environment, reconstructing the trajectory of its adaptation over 
the past decade.

2   |   Results

2.1   |   Psa3 Pangenome Structure is Primarily 
Influenced by the Acquisition and Loss of Mobile 
Genetic Elements

Between 2010 and 2022, 571 Psa3 isolates were collected and 
sequenced from kiwifruit-growing regions in New Zealand's 
North Island (Figure 1A,B). Most of these isolates were sampled 
between 2017 and 2022 as part of a concerted genome biosurveil-
lance effort (Hemara et al. 2022; Hemara et al. 2024). This built 
upon preliminary sequencing research conducted by Plant & 
Food Research, Massey University, and the University of Otago 
from 2010 to 2016, during the initial years of the Psa3 incursion 
(Butler et al. 2013; McCann et al. 2013; Templeton et al. 2015; 
McCann et  al.  2017; Colombi et  al.  2017; Straub et  al.  2018; 
Poulter et al. 2018). Of these, 513 isolates originated from com-
mercial A. chinensis orchards growing monocultures of A. chin-
ensis var. chinensis ‘Zesy002’ and A. chinensis var. deliciosa 
‘Hayward’ (Figure 1C). A further 58 Psa isolates were sampled 
from diverse Actinidia germplasm vines across Plant & Food 
Research's research orchards in the North Island (Figure  1C; 
Hemara et  al.  2022, Hemara et  al.  2024). The New Zealand 
Psa3 population has a star-shaped core single-nucleotide poly-
morphism (SNP) phylogeny, indicative of rapid expansion from 
a clonal origin (Figure  1C). It is largely accepted that New 
Zealand's Psa3 population was founded by a near-clonal intro-
duction, represented by Psa3 V-13.

Through comparison of these new isolates to the reference 
strain Psa3 V-13, isolated at the beginning of the pandemic, 
new variants were identified that have arisen through de novo 
mutation or the acquisition of novel genetic content through 
horizontal gene transfer (HGT). Psa3 V-13, which represents 
the original clonal population first introduced into New 
Zealand, carries an enolase-encoding, or Tn6212-carrying, 
integrative conjugative element (ICE), which was predicted to 
be linked to virulence, likely to have a role in helping bac-
teria grow on preferred carbon sources in planta (Colombi 
et al. 2024). Given the widespread nature of copper spraying 
in kiwifruit orchards, it is perhaps unsurprising that copper 
resistance elements were the most common genomic acquisi-
tion, with over 65% of isolates carrying copABCD on an ICE or 
plasmid (Figure S1). In Psa3, the acquisition of copper resis-
tance ICE elements appears to require the excision and direct 
replacement of the Tn6212-encoding ICE. The most prevalent 
copper resistance element was PacICE10, carried by over 40% 
of isolates (Figure  S1). PacICE10 also conferred the highest 
copper resistance of all ICEs identified (Figure S2). The clear 
dominance of PacICE10 over other elements suggests that this 
element has been strongly selected for.

Outside of ICE excision, gene deletions were less frequent than 
gene gain events. However, several elements appeared to have 
been deleted numerous times, on the basis of deletion strain 
relatedness across the core SNP phylogeny. The most frequent 
deletion was a 38 kb deletion excising a four-gene cassette 

 13643703, 2025, 2, D
ow

nloaded from
 https://bsppjournals.onlinelibrary.w

iley.com
/doi/10.1111/m

pp.70056, W
iley O

nline L
ibrary on [08/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



3 of 14

qatABCD phage defence system (Figure 2A; Gao et al. 2020; 
Lin, Wu, and Wu 2020), present in 34 commercial isolates and 
eight germplasm isolates. Interestingly, while a limited num-
ber of prophage acquisition events were observed, these never 
occurred in the same isolates as phage defence system dele-
tion events. Another deletion of interest was that of a urease 
biosynthetic gene cluster (Figure 2B), which had been lost in 
23 A. chinensis-derived isolates and four germplasm-derived 

isolates. Interestingly, both of these deletions appear to have 
emerged independently over 20 times. Further, albeit rarer, 
deletions resulted in the loss of an achromobactin biosynthetic 
gene cluster (Figure 2C) and an element carrying chemotaxis 
genes, including cheY and pilT (Figure  2D). However, al-
though many of these deletions occurred in multiple lineages 
(Figure S3), the selective pressures driving gene loss remain 
unclear.

FIGURE 1    |    Pseudomonas syringae pv. actinidiae biovar 3 (Psa3) isolates collected and sequenced from New Zealand kiwifruit orchards follow-
ing the 2010 incursion. (A) Geographic distribution of Psa3 isolates collected from commercial kiwifruit orchards across the North Island of New 
Zealand. Bubble size is indicative only and does not directly correspond to the sample number. (B) Psa3 isolates cumulatively collected and sequenced 
from 2010 to 2022 from New Zealand kiwifruit orchards. Isolations from commercial Actinidia chinensis cultivars are shown in orange; isolations 
from research orchard germplasm collections are shown in pink (Hemara et al. 2022; Hemara et al. 2024). The x-axis represents the year of isolation 
for isolates that were later sequenced. (C) Core single-nucleotide polymorphism (SNP) phylogeny of New Zealand Psa3 isolates. A core SNP phyloge-
ny of New Zealand Psa3 isolates was produced relative to the reference Psa3 V-13. Host and year of isolation are indicated.

FIGURE 2    |    Gene deletions of interest in New Zealand's Pseudomonas syringae pv. actinidiae biovar 3 (Psa3) population. (A) Schematic of a 38 kb 
chromosomal gene deletion (6,474,001–6,512,000 bp), including nuclease, pyrophosphatase, recF, hydrolase tatD, and NTPase KAP. (B) Schematic of 
a 42 kb chromosomal gene deletion (3,740,001–3,782,000 bp) spanning the urease biosynthetic gene cluster. (C) Schematic of a 53.7 kb chromosomal 
gene deletion (2,923,241–2,976,955 bp) spanning the achromobactin biosynthetic gene cluster. (D) Schematic of a 66 kb chromosomal gene deletion 
(3,213,001–3,279,000 bp), including pilT, ABC transporters, cheY, uvrC, luxR, and pilus assembly proteins.
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2.2   |   HopF1c Loss in Commercial Orchards May Be 
Mediated by ICE Movement

Alongside the acquisition of copper resistance (Colombi et al. 2017), 
one of the most significant changes observed to date in New 
Zealand's Psa3 population has been effector loss on Psa-resistant 
germplasm vines (Hemara et  al.  2022; Hemara et  al.  2024). 
Interestingly, no further effectors appear to have been gained 
by New Zealand's Psa3 population since its introduction. On the 
other hand, effector loss appears to be highly host-dependent and 
differed significantly between isolates derived from germplasm 
collections and commercial orchards. Twenty percent of isolates 
collected from germplasm vines had lost one or more effectors 
(Hemara et al. 2022, Hemara et al. 2024). In contrast, less than 
1% of the commercial orchard Psa3 isolates surveyed in this study 
had lost an effector; these five Psa3 isolates all lost the same effec-
tor—hopF1c (Table 1). HopF1c is predicted to have ADP-ribosyl 
transferase function, suppressing immune signalling cascades 
(Wang et al. 2010; Zhou et al. 2014). Interestingly, HopF1c appears 
to be recognised across both resistant and susceptible kiwifruit 
hosts (Hemara et al. 2022; Jayaraman et al. 2023). The hopF1c ex-
cision appears to have emerged three separate times in indepen-
dent lineages from three spatially distinct orchards (Table 1 and 
Figure  S3). Orchards A and B are approximately 9 km apart in 
the Bay of Plenty, while Orchard C is nearly 200 km south in the 
Hawke's Bay region (Table 1).

Following identification through comparative genomics, the 
loss of hopF1c was confirmed by multiplex PCR using Psa ITS- 
and hopF1c-specific primers (Figures S4–S6). In all hopF1c de-
letion isolates, the deletion of hopF1c was accompanied by the 
excision of the downstream ‘wild-type' Tn6212-carrying ICE 
and replacement with a copper resistance-encoding ICE. Short- 
and long-read sequencing indicated that Psa3 G_121, the first 
hopF1c loss isolate identified, has a 93 kb deletion spanning 
from approximately 5,381,001 to 5,474,000 bp on the main bac-
terial chromosome (CP011972.2; Figure  3). This deletion site 
is flanked by the conjugal transfer protein traG on both sides, 
suggesting that this deletion may be mediated by traG and, by 
extension, ICE movement (Figure 3).

2.3   |   Despite no Differences in Individual 
In-Planta Growth, Psa3 V-13 ΔhopF1c Outcompetes 
Wild-Type on Select Hosts

To assess whether hopF1c loss confers a fitness benefit over 
wild-type Psa3 V-13, the individual pathogenicity of hopF1c 
isolates collected from the orchard was tested. Psa3 G_121, an 
orchard-derived hopF1c deletion isolate, showed no significant 
difference in pathogenicity to wild-type Psa3 V-13 on the culti-
vars 'Hort16A', 'Zesy002', or 'Zes008' (Figure 4A), despite being 
isolated from 'Zesy002' where we may have expected to see a 
‘home’ advantage. While there was no difference in virulence 
between Psa3 V-13 and Psa3 G_121 on these Actinidia hosts, 
there was increased growth of both strains on 'Hort16A' and 
'Zes008', compared to 'Zesy002' (Figure  4A). However, when 
the Psa3 V-13 ∆hopF1c knockout strain was tested in a more 
sensitive competitive fitness assay against a wild-type control 
(Psa3 V-13 ∆IS), Psa3 V-13 ∆hopF1c outcompeted the wild-type 
isolate on the A. chinensis var. chinensis cultivars 'Hort16A' 
and 'Zes008’, but not 'Zesy002' or the A. chinensis var. deliciosa 
cultivar 'Hayward' (Figure 4B). This suggests that, in competi-
tion, Psa3 V-13 ΔhopF1c may be fitter than wild-type Psa3 on 
select hosts (Figure 4B), despite no individual differences in in-
planta growth (Figure 4A). Pathogenicity assays were repeated 
on potted plants through stem infection assays (Figure 5). All 
inoculated 'Zes008' and 'Zesy002' shoots developed typical ne-
crotic lesions, and there was no significant difference between 
the hopF1c loss and wild-type isolates across all cultivars tested 
(Figure 5).

2.4   |   Orchard Resampling Efforts Suggest That 
the Spread of hopF1c Loss Variants is Currently 
Limited

Driven by the discovery and characterisation of these hopF1c 
loss variants—in particular, the competitive fitness of Psa3 V-13 
∆hopF1c on select hosts—kiwifruit orchards where hopF1c loss 
isolates had been isolated were resampled. Resampling efforts 
collected leaves from existing vines, alongside the deployment 
of young potted trap plants (Figure S7). Trap plants proved par-
ticularly effective for recovering Psa from infected leaf samples, 
especially when leaves with necrosis were difficult to find in 
the orchard canopies. Overall, out of a total of 259 Psa isolates 
collected during this resampling effort, only 6.6% were hopF1c 
loss variants (Table  2). Several hopF1c loss isolates were resa-
mpled from Orchard B (Table 2). However, none were found at 
Orchard A, suggesting that the hopF1c loss variant has not dom-
inated this site (Table 2). Targeted sampling of other orchards, 
associated with the original orchards through shared orchard 
equipment or people movements, also yielded limited numbers 
of hopF1c loss isolates (Table 2). This resampling effort suggests 
that the spread of hopF1c loss isolates is currently limited. In 
combination with pathogenicity and competitive fitness assays, 

FIGURE 3    |    Schematic of the integrative conjugative element PsaNZ13ICE_eno and the neighbouring Exapt_ICE_B. The 93 kb deletion region 
(5,381,001–5,474,000 bp) is highlighted in purple, flanked by traG genes. The effector hopF1c is indicated in pink.

hopF1ctraG traG att siteatt site

PsaNZ13ICE_enoExapt_ICE_B

TABLE 1    |    New Zealand Pseudmonas syringae pv. actinidiae biovar 
3 (Psa3) isolates lacking hopF1c.

Isolate Year Cultivar Orchard Region

G_121 2018 ‘Zesy002’ A Bay of Plenty

H_407 2020 ‘Hayward’ B Bay of Plenty

B_439 2020 ‘Bruno’ C Hawke's Bay

B_440 2020 ‘Bruno’ C Hawke's Bay

G_441 2020 ‘Zesy002’ C Hawke's Bay

Note: All isolates are from commercial Actinidia chinensis orchards.
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this suggests that hopF1c loss isolates are unlikely to dominate 
New Zealand's Psa3 population or cause more severe symptoms 
than the current population.

3   |   Discussion

This research sought to characterise genomic changes in New 
Zealand's Psa3 population over a 12-year period since its 2010 
introduction. Baltrus (2019) suggests that, in P. syringae popu-
lations, gene gain and loss are likely to be the dominant evolu-
tionary forces, dwarfing the impact of SNPs. Gene gain and loss 
represent some of the most accessible ways to quickly generate 
variation in a clonal background, and HGT thus drives the decay 
of clonality (Gogarten, Doolittle, and Lawrence  2002; Puigbò 
et al. 2014). Our results aligned with this expectation, as the ac-
quisition and loss of mobile genetic elements (MGEs) were found 
to be significant drivers of variation in New Zealand's Psa3 pop-
ulation, compared to the negligible impact of mutations. The 
most significant variation in the Psa3 pangenome is due to the 
excision of the ‘native’ enolase-encoding ICE and the integration 

of copper resistance-encoding alternatives. Beyond the move-
ment of copper resistance elements, the loss and acquisition of 
MGEs appear to be limited.

Curiously, no clear subpopulations have emerged in New 
Zealand's Psa population over this 12-year period, despite 
establishment across geographically distant regions and the 
emergence of individual variants of interest. It may well be 
that the rapid spread of the initial incursion population ef-
fectively saturated kiwifruit orchards, meaning that highly 
localised variants are unable to spread unless they happen 
to be significantly more adapted to their environment. This 
differs from observations made of mammalian pathogen pop-
ulations, where subpopulations emerge and genome fixation 
events occur over a similar temporal window. Over a period 
of 15 years, a Shigella sonnei population in Ho Chi Minh 
City underwent localised clonal expansion, punctuated by 
successive sweeps leading to genome fixation events (Holt 
et al. 2013). Similarly, over the span of a decade, substantial 
SNP diversity was observed within a clonal Clade 2 lineage 
of hospital-associated, methicillin-resistant Staphylococcus 

FIGURE 4    |    Pathogenicity and competitive fitness of Pseudomonas syringae pv. actinidiae biovar 3 (Psa3) hopF1c loss strains on common kiwi-
fruit cultivars. (A) Pathogenicity of Psa3 V-13 and Psa3 V-13 G_121 (lacking hopF1c) on tissue culture Actinidia chinensis var. chinensis cultivars 
'Hort16A', 'Zesy002', and 'Zes008'. Bacterial pathogenicity was quantified relative to Psa3 V-13 using quantitative PCR ΔCt analysis. Asterisks in-
dicate the statistically significant difference of Welch's t-test between the indicated strain and wild-type Psa3 V-13, where ns = not significantly 
different. Horizontal black bars represent the median values. (B) Competitive pathogenicity of ‘wild-type’ Psa3 V-13 ΔIS and Psa3 V-13 ΔhopF1c on 
tissue culture of four kiwifruit cultivars, Actinidia chinensis var. deliciosa ‘Hayward’ and A. chinensis var. chinensis cultivars ‘Hort16A’, ‘Zesy002’ 
and ‘Zes008’. Relative quantification was performed at 12 days post-inoculation by quantitative PCR ΔΔCt analysis. The boxplots show the relative 
abundance of effector knockout strains over time, normalised to Psa rDNA internal transcribed spacer (ITS) for each generation and the starting pop-
ulation. Asterisks indicate the statistically significant difference of Welch's t-test between the indicated strain and Psa3 V-13 ∆IS. *p ≤ 0.05, **p ≤ 0.0 
and ns p > 0.05. Horizontal black bars represent the median values.
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aureus in Australia (Baines et  al.  2015). The emergence of 
subpopulations has also been observed in plant pathogen 
populations, albeit over substantially longer timeframes. For 
example, from a single introduced genotype of Xylella fas-
tidiosa subsp. fastidiosa into California over a century ago, 
strong population structure has been observed, largely cor-
related with the geographic origin of these isolates (Vanhove 
et al. 2020). Conversely, a study following the global popula-
tion of the human pathogen Bordetella pertussis from 1920 to 
2010 showed little evidence of geographic clustering, which 
suggests rapid strain flow between regions or countries (Bart 
et al. 2014). This apparent lack of subpopulations observed in 
New Zealand's Psa population may, therefore, be explained by 
both the time since divergence from a clonal origin and the de-
gree of population flow. Pathogen population transmission de-
pends on factors including host density, mobility, and contact 
opportunities, which are inherently different across human 
and plant disease contexts (Manlove et  al.  2022). The life-
style of P. syringae in particular is driven by the water cycle, 

entering this cycle through aerosol formation and returning 
to agricultural systems through rainfall (Morris et al. 2008). 
Furthermore, epidemiological research suggests that the 
movement of wind-blown aerosols following rain events is 
probably an important natural route of Psa spread (Serizawa 
and Ichikawa 1993; Froud et al. 2015). It is possible, therefore, 
that weather-mediated spread may allow Psa population to 
flow across regional boundaries, thus leading to the apparent 
lack of localised evolution observed.

Where genetic element loss has been observed, it has oc-
curred at low frequencies, such as the loss of the urease and 
achromobactin biosynthetic clusters. Interestingly, the loss 
of these gene clusters could be driven by either their role in 
virulence and host adaptation or their redundancy in a high-
input orchard environment. Urea is used as a nitrogen source 
by microbial pathogens of mammals, with urease consid-
ered a virulence factor that helps to alkalise acidic environ-
ments (Lin et al. 2012; Rutherford 2014). In diverse microbial 

TABLE 2    |    Leaf samples collected from commercial orchards and trap plants during the 2022–23 growing season and the number confirmed with 
Pseudomonas syringae pv. actinidiae (Psa).

Source of samples
No. of samples 

taken No. of Psa positive
No. of Psa variants 

identified

Percentage of Psa 
isolates that were 

hopF1c variants (%)

Orchard A 45 35 0 0

Orchard B 31 0 0 0

Other orchardsa 463 191 11 5.8

Trap plants Orchard A 44 27 0 0

Trap plants Orchard B 14 6 6 100

Total 597 259 17 6.56

Note: Number and proportion (%) of Psa variants are also shown.
aThese other orchards were either properties near to Orchards A or B or were associated with these two orchards, in some other way, such as shared orchard equipment 
or via people movements.

FIGURE 5    |    Stem inoculation of Pseudomonas syringae pv. actinidiae biovar 3 (Psa3) into potted Actinidia chinensis cultivars. (A) Stem inocula-
tion of Psa3 into potted A. chinensis plants using a mechanical inoculator. (B) Necrotic lesion length (mm) following stem inoculation of wild-type 
Psa3 and hopF1c loss isolates into A. chinensis var. chinensis ‘Zesy002’ and ‘Zes008’ cultivars, and the control A. chinensis var. deliciosa ‘Hayward’. 
Asterisks indicate the statistically significant difference of Welch's t-test between the indicated strain and Psa3 10627. *p ≤ 0.05, ns p > 0.05. Horizontal 
black bars represent the median values.
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pathosystems, urease loss occurs in specialised pathogens to 
improve host adaptation by reducing toxicity (Chouikha and 
Hinnebusch 2014; Baseggio et al. 2022). Alternatively, it could 
be that kiwifruit orchards with high nutrient inputs select for 
urease loss, as the potential toxic effect of high ammonium 
concentrations may negatively impact both Psa3 and its kiwi-
fruit host (Carlini and Polacco  2008). Urea is also the most 
common nitrogen fertiliser used in New Zealand (Alizadeh 
et al. 2017) and is applied in kiwifruit orchards as a fertiliser 
and to promote leaf drop and degradation in autumn (18 kg/
ha; Vajari, Eshghi, and Fatahi Moghadam  2018; Max  2021; 
Zespri International Ltd.  2022). Achromobactin is an iron-
scavenging siderophore (Berti and Thomas  2009; Owen and 
Ackerley  2011), demonstrated to contribute to virulence in 
Erwinia chrysanthemi (Franza, Mahé, and Expert  2005) 
and to epiphytic fitness of P. syringae pv. syringae (Wensing 
et  al.  2010). However, in some P. syringae strains, achromo-
bactin does not contribute to virulence—in these instances, it 
may be that iron released during infection and plant cell dam-
age renders siderophores obsolete (Owen and Ackerley 2011). 
This may explain the loss of these genes in some Psa3 isolates. 
Alternatively, the iron-scavenging siderophore achromobactin 
may be rendered redundant through the use of iron-rich sup-
plements in the orchard environment (Berti and Thomas 2009; 
Owen and Ackerley  2011). Finally, a similar situation could 
explain the loss of an element carrying chemotaxis genes. 
The high densities of Psa within successfully established le-
sions on susceptible monocultures may be selected for the loss 
of metabolically expensive chemotaxis and motility genes. 
Alternatively, the addition of surfactant adjuvants to chemical 
orchard sprays may create an environment where chemotac-
tic motility is less required. Despite their current infrequency, 
these gene deletions are emerging across independent lin-
eages, suggesting that high-input orchard environments may 
be one of the few features that Psa is not already well adapted 
to. Diverse Psa3 isolates have been isolated from kiwifruit or-
chards in China, despite the fact that Psa could not be found 
on wild kiwifruit vines there (McCann et  al.  2017). If Psa3 
originally emerged in Chinese kiwifruit orchards, it could be 
that these orchards are not as intensively managed as orchards 
in New Zealand, and the high-input nature of our orchards 
has provided new selective pressures.

Perhaps the most interesting change in New Zealand's Psa3 
population is the emergence of host-specific effector loss. 
As observed more generally, the evasion of host recognition 
has occurred primarily through mobile element excision 
rather than mutagenesis. Limited loss of hopF1c was ob-
served in isolates from commercial orchards, in contrast to 
the more frequent recovery of effector loss isolates from re-
sistant Actinidia species in the germplasm collection (Hemara 
et al. 2022; Hemara et al. 2024). The dearth of effector loss in 
commercial orchards is not necessarily surprising, given that 
the A. chinensis cultivars grown in monoculture are not con-
sidered resistant to Psa3, which in turn is unlikely to provide 
strong selection for effector loss. This raises a further ques-
tion about what drives hopF1c loss in commercial A. chin-
ensis orchards. Does hopF1c recognition drive hopF1c loss 
(Hemara et  al.  2022), even though Psa3 ultimately success-
fully suppresses HopF1c-triggered immunity in A. chinensis? 
Or could it be that hopF1c is simply incidentally excised in the 

background of frequent copper resistance ICE acquisition? To 
add weight to the former argument, mutation of Psa3 V-13's 
ShcF chaperone has reduced HopF1c delivery; this mutation, 
too, may have been driven by HopF1c recognition as Psa3 cir-
culated in China prior to global spread (Templeton et al. 2015; 
Jayaraman et al. 2023).

Alternatively, this large deletion may be driven by the combined 
adaptive fitness of copper resistance acquisition and effector 
loss. Under this scenario, effector loss may be faster than if 
hopF1c was located elsewhere in the genome. Genome context 
has already been identified as an important factor in Psa effector 
loss, with the repeated loss of multiple effectors on germplasm 
driven by repetitive elements around a complex effector locus 
(Hemara et al. 2022).

Psa3 V-13 ∆hopF1c was not fitter than ‘wild-type’ Psa3 V-13 in 
competition on the dominant commercial cultivars 'Zesy002' 
and 'Hayward', despite competitive assays suggesting there 
might be more subtle differences at play. Further investigation is 
required to determine whether effector loss impacts other patho-
genic processes beyond in-planta growth. The role of the Tn6212 
element encoded on the frequently replaced ‘wild-type’ enolase 
ICE is also of interest when considering drivers of gene loss. 
Tn6212 modulates gene expression and may help bacteria adapt 
to preferred carbon sources across both plant hosts and reservoir 
environments across the water cycle (Morris et al. 2007; Morris 
et al. 2008; Colombi et al. 2024). Given their distribution across 
the star-like phylogeny of Psa strains, the current prevalence of 
these hopF1c effector loss isolates certainly does not constitute a 
selective sweep of the New Zealand Psa3 population. Escaping 
the burden of hopF1c recognition while simultaneously gaining 
copper resistance may be beneficial for fitness; however, the 
benefit of escape from HopF1c recognition may not be sufficient 
to outcompete other copper-resistant isolates in the orchard 
environment. It remains to be seen whether these effector loss 
isolates will significantly increase in frequency in current on-
orchard Psa3 populations, given more time, or given the intro-
duction of additional kiwifruit genotypes into production.

Comprehensive genome biosurveillance of New Zealand's once 
clonal Psa3 population has presented insights into how pathogen 
populations adapt over time and underscores the importance of 
carefully considering the deployment of disease management 
strategies. The emergence of effector loss on both susceptible and 
resistant kiwifruit vines highlights the importance of managing 
recurrent pathogen infections, as repeated exposure to host re-
sistance has been repeatedly demonstrated to drive effector loss 
(Pitman et al. 2005; Arnold et al. 2007; Trivedi and Wang 2014). 
Whether in monocultures, in the diverse breeding material of 
germplasm collections, or in wild vines that have escaped the 
orchard environment, these exposure events provide an oppor-
tunity for the pathogen population to break down resistance. 
The effector loss observed to date also has implications for dis-
ease resistance breeding programmes, which seek to introduce 
resistance genes from Psa-resistant species like A. arguta and 
A. melanandra into commercial cultivars. We have demon-
strated the recognition of HopF1c, HopAW1a, AvrRpm1a, and 
HopZ5a across different Actinidia species (Hemara et al. 2022; 
Hemara et al. 2024). Should resistant kiwifruit cultivars be de-
ployed as monocultures, the emergence of effector loss isolates 
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at a higher frequency than the current loss of hopF1c on sus-
ceptible kiwifruit may occur. Furthermore, as potentially in the 
case of hopF1c, the compounding impact of multiple drivers of 
resistance breakdown could act in concert to quickly overcome 
recognition.

A global over-reliance on chemical control measures, both in 
horticultural settings and more widely in agricultural and clin-
ical settings, has seen the widespread emergence and spread 
of factors like copper resistance genes and copper resistance-
conferring mutations (Meek, Vyas, and Piddock  2015; Miller, 
Ferreira, and LeJeune 2022; Cella et al. 2023). This also holds 
true for control technologies used in growing systems, whether 
that be developing copper resistance (Colombi et  al.  2017) or 
evolving resistance to bacteriophage used as biological control 
agents (Warring et al. 2022). The loss of biosynthetic gene clus-
ters like achromobactin and urease further demonstrates the 
potential sensitivity of these populations to chemical inputs. 
These molecular arms races that drive bacterial adaptation will 
continue to come to the forefront of effective pathogen control 
in the coming years. If microbial communities rapidly overcome 
control strategies upon exposure in the field, the tools we use to 
manage disease may begin to lose efficacy. Therefore, genome 
biosurveillance is an increasingly critical tool to detect and 
quantify adaptations in orchard-based microbial communities. 
As we seek to diversify horticultural practices to reduce our 
dependence on chemical control measures and move towards 
more sustainable practices, we must ensure that we monitor and 
assess the risk of pathogen adaptation to both chemical and bio-
logical control measures, as well as resistance gene deployment 
in the field.

4   |   Experimental Procedures

4.1   |   Kiwifruit Vine Sampling

Sampling efforts were purposive, based on Psa symptoms in-
cluding leaf spots and bacterial ooze, as previously described 
in Hemara et al. (2022). Symptomatic leaves, buds, shoots, and 
canes were sampled using secateurs sterilised with repeated 
rinses in 80% ethanol. All plant material was secured in three 
layers of packaging and stored at approximately 4°C overnight, 
before transportation back to the laboratory for isolation.

4.2   |   Commercial Orchard Sampling and Psa 
Isolation

Sampling was conducted across the Auckland, Waikato, Bay of 
Plenty, Hawke's Bay, and Northland regions of New Zealand, 
representative of several of New Zealand's main kiwifruit-
growing regions (Table  3). Samples were collected over the 
spring and summer of each growing season, between November 
and January. Psa3 isolates, from both this and earlier surveys, 
from A. chinensis var. chinensis ‘Zesy002’ and A. chinensis var. 
deliciosa ‘Hayward’ vines, as well as the rootstock cultivar A. 
chinensis var. deliciosa ‘Bruno’ (Table  S1). Psa was isolated as 
described in Hemara et  al.  (2022). Quantitative PCR (qPCR) 
was carried out on an Illumina Eco Real-Time PCR plat-
form (Illumina), following the protocol outlined by Andersen 

et al. (2018). Single colonies were tested with Psa ITS F1/R2 PCR 
primers and primers specific to hopZ5 to identify Psa3 strains.

4.3   |   DNA Extraction and Sequencing

DNA was extracted from Psa isolates collected in 2017, 2018, 
2019, and 2020, as described in Hemara et al. (2022). For sam-
ples collected in 2022, DNA was purified using the Wizard 
Genomic DNA Purification Kit (Promega). Libraries were con-
structed and sequenced as described in Table 4. Long-read se-
quencing was performed by Auckland Genomics (the University 
of Auckland, New Zealand) on an Oxford Nanopore Technology 
(ONT) MinION platform with an R9.4.1 flow cell for select 
isolates.

4.4   |   Microbiological Methods

All Psa strains were streaked from glycerol stocks onto Luria 
Bertani (LB) agar (Bertani, 1951) supplemented with 12.5 μg/mL 
nitrofurantoin (Sigma Aldrich) and 40 μg/mL cephalexin (Sigma 
Aldrich) for Psa selection. Plates were sealed with Parafilm and 
grown for 48 h at 22°C. LB cultures were grown overnight on a 
digital orbital shaker at 100 rpm and 22°C.

4.5   |   Genetically Modified Bacterial Strains

Two genetically modified knockout strains were used in this 
study: Psa3 V-13 ∆hopF1c (Hemara et al. 2022) and Psa3 V-13 
∆IS. Psa V-13 ΔIS is a derivative of Psa V-13 in which the redun-
dant insertion sequence IS285 was knocked out using method-
ology described in Jayaraman et al. (2020). Cloning primers are 
listed in Table 5.

4.6   |   Copper Resistance Testing

Copper resistance was determined by assessing the minimum 
inhibitory concentration (MIC) of CuSO4 required to inhibit 

TABLE 3    |    Pseudomonas syringae pv. actinidiae biovar 3 (Psa3) 
isolates sampled from commercial kiwifruit orchards across New 
Zealand.

Region
Kiwifruit-

growing region Year

Auckland Franklin 2017, 2018, 2020

Waikato Waikato 2017, 2018, 2020, 2022

Bay of Plenty Tauranga 2017, 2018, 2020, 2022

Bay of Plenty Te Puke 2017, 2018, 2020, 2022

Bay of Plenty Whakatane 2017, 2018, 2020, 2022

Hawke's Bay Hawke's Bay 2020

Northland Northland 2022

Note: Kiwifruit-growing region, as classified by Kiwifruit Vine Health, is also 
indicated.
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bacterial growth, following the protocol described in Colombi 
et al. (2017).

4.7   |   In-Planta Pathogenicity 
and Competition Assays

4.7.1   |   Tissue Culture Plantlets

Actinidia spp. tissue culture plantlets were supplied by 
Multiflora Laboratories (Auckland, New Zealand), with the ex-
ception of A. chinensis var. chinensis ‘Zes008’, which was sup-
plied by the New Zealand Institute for Plant and Food Research 
Ltd. (Palmerston North, New Zealand). Each plastic container 
(or pottle) contained three plantlets for A. chinensis var. chinen-
sis ‘Hort16A’ and ‘Zes008’, and five plantlets for A. chinensis var. 
chinensis ‘Zesy002’ and A. chinensis var. deliciosa ‘Hayward’. 
Actinidia plantlets were grown in 400 mL lidded plastic pottles 
on half-strength Murashige and Skoog (MS) agar.

4.7.2   |   Flood Inoculation

Psa3 isolates were grown overnight in 5 mL LB, and cell density 
was determined by measuring the optical density of a 1/10 di-
lution at 600 nm (OD600). Culture was diluted to give an OD600 
of 0.005 in 500 mL 10 mM MgSO4 and tissue culture plantlets 

were flood inoculated using the pathogenicity assay established 
by McAtee et al. (2018). For single-isolate experiments, bacterial 
growth was quantified at 12 days post-inoculation (dpi) by plate 
count (Hemara et al. 2022).

4.7.3   |   Competitive In-Planta Pathogenicity Assays

Psa3 V-13 knockout strains were grown overnight in 5 mL LB, 
and cell density was determined by measuring the optical den-
sity of a 1/10 dilution at 600 nm (OD600). For 1:1 competition as-
says, each culture was diluted to give an OD600 of 0.0025, to give 
a total OD600 of 0.005 in 500 mL 10 mM MgSO4 when pooled 
together in equal proportion. Psa V-13 ΔIS was used as a control 
strain, and Psa V-13 ΔhopF1c represented the hopF1c deletion 
(Hemara et  al.  2022). Tissue culture plantlets were flood in-
oculated using the pathogenicity assay established by McAtee 
et al. (2018), with three replicate pottles per experiment.

Leaf discs were harvested at 12 dpi. A 0.8-cm-diameter cork borer 
was used to punch 16 leaf discs per pottle. Leaf discs were briefly 
washed in 40 mL of sterile Milli-Q water. Four technical replicates 
of four leaf discs each were ground in 350 μL sterile 10 mM MgSO4 
with three 3.5-mm stainless steel beads in a Storm24 Bullet 
Blender (Next Advance). Samples were ground twice at maximum 
speed for 1 min. A further 350 μL sterile 10 mM MgSO4 was added, 
and samples were ground at maximum speed for 1 min.

TABLE 4    |    Short-read sequencing platforms used for each isolation year.

Year(s)
Sequencing 

platform Library preparation
Paired-end read 

length (bp) Provider

2017 and 
2018

Illumina 
HiSeq 2500

Nextera XT DNA 
Library Preparation 

Kit (Illumina)

2 × 125 Australian Genome Research 
Facility (Melbourne, Australia)

2019 Illumina 
NovaSeq 6000

plexWell 96 multiplexed 
library preparation 

kit (seqWell)

2 × 150 Australian Genome Research 
Facility (Melbourne, Australia)

2020 Illumina 
HiSeq 2500

purePlex DNA Library 
Prep Kit (seqWell)

2 × 150 Auckland Genomics (Auckland, 
New Zealand) and Microbial 
Genome Sequencing Center 

(MiGS; Pittsburgh, USA)

2022 Illumina MiSeq purePlex DNA Library 
Prep Kit (seqWell)

2 × 150 Auckland Genomics (Auckland, New 
Zealand) and Novogene (Beijing, China)

TABLE 5    |    Knockout cloning and confirmation primers used to develop the Psa3 V-13 ∆IS knockout strain.

Target Sense Primer sequence (5′–3′) Product size (bp)

Upstream flank for knockout 
construct

Forward GGCGCTGATCATGACCCTTG 1070

Reverse GGTCTCTCTAGACCATGGAGATGATGCCGGTG

Downstream flank for knockout 
construct

Forward GGTCTCTCTAGATCGCGAAGATGTTGGTGCAA 879

Reverse TGCCCAACCTGAAAGTGCTG

IS region Forward ACGTCGATGGGCAATGGATC 5642

Reverse CATTATCTGGGGGCCTGGCT

Note: The XbaI site is underlined.
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To recover the bacterial population, the resulting leaf homog-
enate was used to inoculate 50 mL LB supplemented with 
12.5 μg/mL nitrofurantoin in a 500 mL conical flask. Leaf 
homogenate (200 μL) was used for A. chinensis var. chinen-
sis cultivars, including 'Hort16A', 'Zesy002', and 'Zes008'. For 
'Hayward', 300 μL of leaf homogenate was used, as less bacte-
rial inoculum is recovered from this tolerant cultivar. Flasks 
were shaken on a digital orbital shaker at 100 rpm for 48 h. 
Aliquots (1 mL) of bacterial culture were sampled after shak-
ing for DNA extraction and long-term glycerol stock storage. 
The DNeasy Blood & Tissue kit was used for DNA extractions 
from LB culture, following the protocol for gram-negative bac-
teria (Qiagen). DNA samples were diluted 1/10 before being 
used as templates for qPCR.

Real-time qPCR was performed using an Illumina Eco Real-
Time PCR platform, following the protocol developed by 
Andersen et  al.  (2018). qPCR was conducted using strain-
specific primers to quantify the relative bacterial growth of 
each strain in planta. Bacterial growth was assessed by rel-
ative quantification for the wild-type-like strain (ΔIS) using 
strain-specific forward (5′-ACTACTTCACCCAGGACCTG-3′) 
and reverse (5′-CGTTTGCACCAACATCTTCG-3′) prim-
ers, and similarly for the ∆hopF1c knockout strain using for-
ward (5′-TCCACAGCATGACCAACA-GT-3′) and reverse 
(5′-TGCGGTCGATCAAAATCTCTAGA-3′) primers. The cycle 
threshold (Ct) value for each knockout primer pair was nor-
malised, using the ∆∆Ct method, to the Psa ITS Ct value, and then 
to the ∆Ct values for the original inoculum/pool. Relative quantifi-
cation values were visualised as 2−∆∆Ct, with each knockout strain 
normalised to Psa rDNA ITS for each generation and the starting 
population.

4.7.4   |   Potted Plant Pathogenicity Assays

Potted 'Zesy002' and 'Zes008' plants were inoculated with four 
strains of Psa. Suspensions of each Psa strain were delivered di-
rectly into the stem using a hand-held mechanical inoculator with 
two rows of fine stainless steel needle tips (4 mm long) at a spacing 
of 1.5 mm (Tahir et al. 2019). This was dipped into the Psa sus-
pension before gently squeezing the needles into a soft and flex-
ible stem section. Stems of large 'Zes008' shoots (Assay 1) were 
inoculated with 2 × 108 CFU/mL of Psa inoculum approximately 
250–400 mm below the growing tip, while other stems (Assays 2 
and 3) were inoculated 100–200 mm below the growing tip (due 
to use of smaller plants). Necrotic stem lesions were measured 
after 20–26 days and analysed for differences between individual 
strains and between the wild-type and Psa variant strains.

Two hopF1c deletion isolates (Psa3 G_121 and G_441) and two 
control isolates (Psa3 10627 and G_122) were used. Inoculum 
was prepared by resuspending strains grown for 2 days on King's 
B (KB) medium (King, Ward, and Raney 1954) in sterile water to 
a final concentration of 1–5 × 108 CFU/mL. Bacterial concentra-
tion was confirmed by plating 10-μL droplets of 1/10 dilutions of 
the inoculum onto KB plates. The first stem inoculation assay 
(Assay 1) was carried out using regrowth shoots. For Assays 2 
and 3, 'Zesy002' and 'Zes008' tissue culture plantlets were ex-
flasked and potted into 1-L pots, with potted plants 250–500 mm 
in height at the time of inoculation.

4.7.5   |   Confirmation of Psa From Symptomatic Tissues

Bacteria were isolated from 12 to 24 stem samples for each 
of the Psa strains used in each of the plant assays by macer-
ating necrotic stems and their surrounding tissue in 300 μL of 
sterile distilled water. Fifty to one hundred microlitres of the 
macerate was streaked on agar plates of KB and KB medium 
supplemented with 1.5% boric acid and cephalexin 80 mg/L 
(KBC); both media were also supplemented with 1% cyclohex-
imide. The KB plates were incubated at 28°C for 48 h, and the 
KBC plates were incubated for 7 days before purifying colonies 
showing a morphology similar to that of Psa. The identity of 
the bacteria was confirmed by duplex PCR using the primer 
pair Psa F1/R2 (Rees-George et al. 2010) and the primers Psa-
hopF1c-F and Psa-hopF1c-R.

4.8   |   Spread of New Psa Variant in Orchards 
and Use of Trap Plants

During the spring of 2022, Kiwifruit Vine Health (KVH) led 
delimiting surveillance studies to manage the movement of 
risk goods and reduce risk to neighbouring properties. Leaves 
with necrotic spotting from Orchards A and B where Psa vari-
ants had been discovered, and from nearby and associated or-
chards (e.g., through shared orchard equipment), were sent to 
Hill Laboratories (Hamilton, New Zealand) to recover Psa and 
determine if the Psa variant was present.

Potted kiwifruit trap plants of 'Hayward' or 'Bruno' were placed 
in Orchards A and B to recover Psa, as it was difficult finding 
leaves with Psa leaf necrosis. Twenty trap plants were placed 
in Orchard A on two occasions (27 September to 19 October 
2022) and exposed for 7 and 13 days, respectively, before being 
returned to a covered outdoor area for 2–3 weeks to allow symp-
tom development. In Orchard B, trap plants were set up on 21 
November 2022 and leaf sampling was carried out in situ after 
21 days and sent to Hill Laboratories for processing.

For the identification of hopF1c isolates, primers that flanked 
the hopF1c gene were designed using Primer3 (Untergasser 
et  al.  2012) in Geneious R11 (https://​www.​genei​ous.​com; 
Biomatters). Forward (5′-TGTGGTA-CTTCTGGCTCTCATCA
-3′) and reverse (5′-TCGTCCACTACCTGCGCT-3′) primers am-
plified a 602 bp fragment in wild-type strains of Psa but failed to 
amplify a band from hopF1c loss variants.

4.9   |   Bioinformatic Methods

4.9.1   |   Psa3 Genome Assembly and Pangenome Analysis

Quality control reports for the raw sequencing reads were gen-
erated using FastQC (v. 0.11.7; Andrews 2010). Paired-end reads 
were assembled using SPAdes (v. 3.14.0; Bankevich et al. 2012) 
and shovill (v. 0.9.0; https://​github.​com/​tseem​ann/​shovill).

Trycycler (v. 0.5.4) was used to curate consensus long-read as-
semblies (Wick et al. 2021), using the Flye (v. 2.9.2; Kolmogorov 
et  al.  2019) and Canu (v. 2.2; Koren et  al.  2017) assemblers. 
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Unicycler (v. 0.5.0) was used to generate hybrid assemblies 
(Wick et al. 2017).

Contigs were annotated with Prokka (v. 1.3; Seemann  2014) 
using the Psa3 V-13 (ICMP 18884) protein model. PHASTEST 
was used to identify potential prophage sequences (Wishart 
et  al.  2023). PADLOC was used to identify antiphage defence 
systems (v. 2.0.0; Payne et  al.  2022). Roary (v. 3.13.0; Page 
et al. 2015) and Panaroo (v. 1.3.0; Tonkin-Hill et al. 2020) were 
used for pangenome analysis. Phandango (Hadfield et al. 2018) 
and pagoo (v. 0.3.17; Ferrés and Iraola  2021) were used for 
pangenome visualisation. Mandrake (v. 1.2.2; Lees et al. 2022) 
was used to produce stochastic cluster embedding visualisations 
from pangenome gene presence/absence data.

4.10   |   Psa3 Variant Calling

Snippy (v. 4.6.0) was used to map Psa3 reads to the Psa3 V-13 ref-
erence genome and snippy-core was used to produce a core SNP 
alignment (Seemann  2015). New Zealand Psa3 isolates from 
both commercial kiwifruit orchards (Table S1) and germplasm 
collections (Hemara et al. 2022; Hemara et al. 2024) were used. 
Gubbins (v. 2.4.1) identified recombinant regions in this align-
ment, producing a filtered alignment (Croucher et  al.  2015). 
RAxML (v. 8.2.12; -f a -# 100 -m GTRCAT) was used to gener-
ate a maximum-likelihood phylogenetic tree with 100 bootstrap 
replicates (Stamatakis  2014). The phylogeny and associated 
metadata were visualised with the R package ggtree (v. 2.2.4; Yu 
et al. 2017). Only bootstrap support values of 50 or above were 
visualised.

Unmapped reads, as output by Snippy, were assembled 
using SPAdes (v. 3.14.0; Bankevich et  al.  2012) and annotated 
with Prokka (v. 1.3; Seemann  2014). Magic-BLAST (Boratyn 
et  al.  2019) was used to build custom BLAST databases of 
known effectors as defined by Dillon et al. (2019), ICEs (Colombi 
et al. 2017; Poulter et al. 2018) and plasmids to BLAST the as-
sembled unmapped contigs with BLAST+ (v. 2.10.1+; Camacho 
et  al.  2009). Novel elements were identified using the NCBI 
Nucleotide BLAST web interface (Johnson et  al.  2008). Gene 
deletions were identified from bam format read alignments by 
CNVnator (v. 0.4.1; Abyzov et al. 2011) and compared to pange-
nome gene presence/absence data.

4.11   |   Data Visualisation and Statistical Analysis

Statistical analysis was conducted in R (R Core Team 2024), 
and figures were produced using the packages ggplot2 
(Wickham  2016) and ggpubr (Kassambara  2017). Plots were 
exported from R as PDF files and prepared for publication in 
Adobe Illustrator (Adobe Inc.). Post hoc statistical tests were 
conducted using the ggpubr (v. 0.3.0) and agricolae (v. 1.3) 
packages (de Mendiburu 2017; Kassambara 2017). The stats_
compare_means() function from the ggpubr package was used 
to calculate omnibus one-way analysis of variance (ANOVA) 
statistics to identify statistically significant differences across 
all treatment groups (Kassambara 2017). For normally distrib-
uted populations, Welch's t-test was used to conduct pairwise 
parametric t-tests between an indicated group and a designated 

reference (Kassambara  2017). The HSD.test() function from 
the agricolae package was used to calculate Tukey's honest 
significant difference (de Mendiburu 2017).

Graphical schematics were made in BioRender (https://​www.​
biore​nder.​com/​).
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