NbPTR1 confers resistance against Pseudomonas syringae pv. actinidiae in kiwifruit

Abstract

Pseudomonas syringae pv. actinidiae biovar 3 (Psa3) causes a devastating canker disease in yellow-fleshed kiwifruit (Actinidia chinensis). The effector HopZ5, which is present in all isolates of Psa3 causing global outbreaks of pandemic kiwifruit canker disease, triggers immunity in Nicotiana benthamiana and is not recognised in susceptible A. chinensis cultivars. In a search for N. benthamiana non-host resistance genes against HopZ5, we found that the nucleotide-binding leucine-rich repeat receptor NbPTR1 recognised HopZ5. RPM1-interacting protein 4 (RIN4) orthologues from multiple plants, including kiwifruit, were associated with NbPTR1-mediated autoimmunity suppression and recognition of HopZ5. No functional orthologues of NbPTR1 were found in A. chinensis. NbPTR1 transformed into Psa3-susceptible A. chinensis var. chinensis ‘Hort16A’ plants introduced HopZ5-specific resistance against Psa3. Altogether, this study suggested that expressing NbPTR1 in Psa3-susceptible kiwifruit is a viable approach to acquiring resistance to Psa3 and it provides valuable information for engineering resistance in otherwise susceptible kiwifruit genotypes.

Publication
Plant, Cell & Environment
Lauren Hemara
Lauren Hemara
Doctoral Candidate

Lauren Hemara is a Doctoral Candidate at the University of Auckland.